
Repeatable Reverse Engineering with PANDA
B. Dolan-Gavitt (NYU), J. Hodosh (MIT), P. Hulin (MIT), T. Leek (MIT), R. Whelan (MIT)

*Slides adapted from RECON 2014 presentation, B. Dolan-Gavitt

What is PANDA?
Platform for Architecture Neutral Dynamic Analysis

-Open source dynamic analysis tool to support whole system reverse engineering

-Functionality can be extended by analysis plugins

-Supports x86, ARM, MIPS

What Makes PANDA Different?
-Ability to ‘Record and Replay’

-Capability to repeat execution trace with all the same data over and over again

-Analyze execution (offline) in order to develop understanding of the system

Basic PANDA Workflow

https://github.com/moyix/panda/blob/master/docs/manual.md

Record and Replay
-Draw “imaginary line” around CPU and memory in Guest OS

-Log three kinds of input that cross the line:

-Data entering the CPU

-Hardware interrupt and parameters

-Data written to RAM during direct memory access

-Also record ‘trace point’ on any write to the log (determines when to replay input)

-Value of program counter, instruction count, and implicit loop variable

Record and Replay

“Repeatable Reverse Engineering with PANDA”,
B. Dolan-Gavitt (NYU), J. Hodosh (MIT), P. Hulin (MIT), T. Leek (MIT), R. Whelan (MIT)

Record and Replay
-Different from replay in VMWare

-PANDA does not execute any device code: “no need to ‘go live’”

-Intent is to perform specific replay-based analysis

-Allows for in-depth analysis too slow to run in real-time

-e.g., taint flow analysis

Record and Replay
-Allows for repeatability of results (difficult to do with dynamic analysis)

-Traditional dynamic analysis performed in a debugger cannot execute backwards

-Inspection of earlier program state requires program restart:

-Heap address will change

-Data structure location will need to be found again (w/o debugging symbols)

-PANDA record and replay accelerates the reverse engineering process

Sharing of Replays
-Size of recordings are small enough to be shared between analysts

-Replays are posted at www.rrshare.org and can be downloaded (.rr files)

http://www.rrshare.org

Plugin Architecture
-Plugins allow for more specific analysis after whole-system recording

-Implement functions that can take action at various instrumentation points

-Examples include:

-Tappan Zee (North) Bridge (TZB): set of techniques to mine memory access

“Repeatable Reverse Engineering with PANDA”,
B. Dolan-Gavitt (NYU), J. Hodosh (MIT), P. Hulin (MIT),

T. Leek (MIT), R. Whelan (MIT)

Plugin Architecture
-Other examples include:

-callstack_instr: calling context tracking

-syscalls: system call tracking

-taint2: data labeling and taint flow tracking

-scissors: excise smaller portions of replay to focus attention

Plugin Architecture
-QEMU code execution process:

-Guest OS code is translated to internal representation (TCG IR)

-QEMU generates basic block of code from IR directly executable on host

-PANDA takes TCG IR and generates LLVM instructions to execute on host

-LLVM translation allows for platform independence, more complex taint analysis

-Plugins allow user to register callbacks at various points of QEMU execution

Plugin Architecture

“Repeatable Reverse Engineering with PANDA”,
B. Dolan-Gavitt (NYU), J. Hodosh (MIT), P. Hulin (MIT), T. Leek (MIT), R. Whelan (MIT)

Plugin Architecture

https://github.com/moyix/panda/blob/master/docs/manual.md

Plugin Architecture
-PANDA framework allows for complex plugin-to-plugin interaction:

-Example usage: (e.g., detect if user’s password is sent out over the network)

-search tap points for string which defines a callback that triggers on match

-analysis plugin might use this callback to be notified when this string is used

-taint plugin could then taint the string in memory and register a callback with
the syscalls plugin that triggers whenever sys_send is called (and determines
whether the data written is tainted)

Case Studies
-Successfully used PANDA to quickly reverse engineer a popular video game from
1999 that required a 26-character CD-key

-Demonstrated breaking of Spotify DRM

-Rapidly identified cause of crash in Internet Explorer as a ‘use-after-free’ bug
(specifically CVE-2011-1255)

Conclusion
-Primary limitation is performance (record-time)

-Advantage over traditional dynamic analysis is repeatability of results using
record/replay capability

-Compelling use cases have been presented for employing PANDA to rapidly
reverse engineer complex binary systems

-Application to reverse engineering malware

References
B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, R. Whelan, Repeatable Reverse
Engineering with PANDA, Proceedings of the 5th Program Protection and Reverse
Engineering Workshop, Article No. 4, December 2015

B. Dolan-Gavitt, T. Leek, Tappan Zee (North) Bridge: Mining Memory Accesses for
Introspection, November 2013

R. Whelan, Architecture-Independent Dynamic Information Flow Tracking, Master’s
Thesis, Northeastern University, November 2012.

PANDA manual, https://github.com/moyix/panda/blob/master/docs/manual.md

https://github.com/moyix/panda/blob/master/docs/manual.md

